
www.manaraa.com

Proceedings of the NAACL HLT Workshop on Software Engineering, Testing, and Quality Assurance for Natural Language Processing, pages 65–73,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

Modular resource development and diagnostic evaluation framework for
fast NLP system improvement

Gaël de Chalendar, Damien Nouvel
CEA, LIST, Multilingual Multimedia Knowledge Engineering Laboratory,

F-92265 Fontenay-aux-Roses, France.
{Gael.de-Chalendar,Damien.Nouvel}@cea.fr

Abstract

Natural Language Processing systems are
large-scale softwares, whose development in-
volves many man-years of work, in terms of
both coding and resource development. Given
a dictionary of 110k lemmas, a few hundred
syntactic analysis rules, 20k ngrams matrices
and other resources, what will be the impact
on a syntactic analyzer of adding a new pos-
sible category to a given verb? What will be
the consequences of a new syntactic rules ad-
dition? Any modification may imply, besides
what was expected, unforeseeable side-effects
and the complexity of the system makes it dif-
ficult to guess the overall impact of even small
changes. We present here a framework de-
signed to effectively and iteratively improve
the accuracy of our linguistic analyzer LIMA
by iterative refinements of its linguistic re-
sources. These improvements are continu-
ously assessed by evaluating the analyzer per-
formance against a reference corpus. Our first
results show that this framework is really help-
ful towards this goal.

1 Introduction

1.1 The evaluation framework
In Natural Language Processing (NLP), robustness
and reliability of linguistic analyzers becomes an
everyday more addressed issue, given the increas-
ing size of resources and the amount of code im-
plied by the implementation of such systems. Be-
yond choosing a sound technology, one must now
have efficients and user-friendly tools around the
system itself, for evaluating its accuracy. As shown

by (Chatzichrisafis et al., 2008), where developers
receive daily reports of system’s performance for
improving their system, systematic evaluation with
regression testing has shown to be gainful to accel-
erate grammar engineering.

Evaluation campaigns, where several participants
evaluate their system’s performance on a specific
task against other systems, are a good mean to
search for directions in which a system may be able
to improve its performance. Often, these evaluation
campaigns also give possibility for participants to
run their analyzer on test data and retrieve evalua-
tion results. In this context, parsers authors may rely
on evaluation campaigns to provide performance re-
sults, but they should also be able to continuously
evaluate and improve their analyzers between evalu-
ation campaigns. We aim at providing such a generic
evaluation tool, using evaluation data to assess sys-
tems accuracy, this software will be referenced as
the “Benchmarking Tool”.

Approaches concerning Natural Language Pro-
cessing involve everyday more and more resource
data for analyzing texts. These resources have
grown enough (in terms of volume and diversity),
that it now becomes a challenge to manipulate them,
even for experienced users. Moreover, it is needed
to have non-developers being able to work on these
resources: it is necessary to develop accessible tools
through intuitive graphical user interfaces. Such a
resource editing GUI tool represent the second part
of our contribution, called the “Resource Tool”.

The overall picture is to build a diagnostic frame-
work enabling a language specialist, such as a lin-
guist, to status, almost in real-time, how modifica-

65



www.manaraa.com

tions impact our analyzer on as much test data as
possible. For analyzers, each resource may have an
effect on the final accuracy of the analysis. It is of-
ten needed to iterate over tests before understanding
what resource, what part of the code needs to be im-
proved. This is especially the case with grammar
engineering, where it is difficult to predict the con-
sequences of modifying a single rule. Ideally, our
framework would allow the manipulator to slightly
alter a resource, trigger an evaluation and, almost in-
stantaneously, view results and interpret them. With
this framework, we expect a large acceleration in the
process of improving our analyzer.

In the remaining of this introduction, we will
describe our analyzer and Passage, a collabora-
tive project including an evaluation campaign and
the production of a reference treebank for French
through a voting procedure. Section 2 will describe
our evaluation framework; its architecture, its two
main modules and our first results using it. Section
3 describes some related works. We conclude in sec-
tion 4 by describing the next steps of our work.

1.2 The LIMA linguistic analyzer
Our linguistic analyzer LIMA (LIc2m Multilingual
Analyzer, (Besancon and de Chalendar, 2005)), is
implemented as a pipeline of independent modules
applied successively on a text. It implements a de-
pendency grammar (Kahane, 2000) in the sense that
produced analysis are exclusively represented as bi-
nary dependency relations between tokens.

The analyzer includes, among other modules, a
tokenizer segmenting the text based on punctuation
marks, a part of speech tagger, short and long dis-
tance dependencies extractors based on finite-state
automata defined by contextualized rules. The latter
rules express successions of categories, augmented
with constraints (on words inflexion, existence of
other dependencies, etc.). The analyzer also in-
cludes modules to find idiomatic expressions and
named entities that, once recognized, are merged
into a single token, thus allowing grammar rules to
apply on those. Furthermore, modules may be spe-
cialized in processing language-specific phenomena,
e.g. Chinese tokenization, German compounds, etc.
Currently, the analyzer is able to process more or
less deeply ten languages, including English, Span-
ish, Chinese, Arab, French and German.

1.3 The Passage Project
Our work is part of the Passage project (Clergerie
et al., 2008b). The objectives of this project are
twofold. Firstly, it organizes two evaluation cam-
paigns of syntactic analyzers (around 15 participat-
ing systems) for the French language. Secondly, it
aims at producing a large scale reference treebank
for French by merging the output of all the partic-
ipating parsers, using a Rover (Recognizer Output
Voting Error Reduction) (Fiscus, 1997) approach.

Within this project, syntactic annotations are pro-
duced in a common format, rich enough to represent
all necessary linguistic features and simple enough
to allow participating parsers (using very different
parsing approaches) to represent their analysis in
this format. It is an evolution of the EASy cam-
paign format, mixing simple non recursive chunks
and dependency relations between chunks or tokens.
It respects two proposed ISO specifications: MAF
(ISO 24611) and SynAF (ISO 24615). The chunks
and dependencies types are issued from the ISO data
category registry, DCR1, currently using the French
language section names. The syntactic analysis of
a corpus in the Passage format provides information
about:

• Segmentation of the corpus into sentences

• Segmentation of sentences into forms

• Non-recursive typed (listed in Table 1) chunks
embedding forms

• Labeled typed (listed in Table 2) dependencies
that are anchored by either forms or chunks

Type Explanation
GN Nominal Chunk
NV Verbal Kernel
GA Adjectival Chunk
GR Adverbial Chunk
GP Prepositional Chunk
PV Prepositional non-tensed Verbal Kernel

Table 1: Chunks types

Within the EASy project, parsers have been eval-
uated against a reference, which itself was a small
subset of the available corpora. The reference was

1http://www.isocat.org

66



www.manaraa.com

Type Explanation
SUJ-V Subject-verb
AUX-V Aux-verb
COD-V Direct objects
CPL-V Other verb arguments/complements
MOD-V Verb modifiers (e.g. adverbs)
COMP Subordinate sentences
ATB-SO Verb attribute
MOD-N Noun modifier
MOD-A Adjective modifier
MOD-R Adverb modifier
MOD-P Preposition modifier
COORD Coordination
APPOS Apposition
JUXT Juxtaposition

Table 2: Dependencies types

created by human annotation of random sentences
within the corpora. Thus, once this evaluation cam-
paign had been finished, the annotated corpora ref-
erence was released for participants to test and im-
prove their parser. Currently, we use this reference
for benchmarking our analyzer.

1.4 Metrics for parsing evaluation
We are constantly recalled that evaluation metrics
and methodologies evolve and are subject to intense
research and innovation (Carroll et al., 2002). Dis-
cussing these metrics is not in the scope of this pa-
per, we only need to be able to work out as many
metrics as possible on the entire corpus or on any
part of it. The evaluation is supposed, for each doc-
ument d and for each type (of chunk or of depen-
dency) t within all types set T , to return following
counts:

• Number of items found and correct - fc(d, t)

• Number of items found - f(d, t)

• Number of items correct - c(d, t)

With this approach, we are able to compute com-
mon Information Retrieval (IR) metrics (Rijsbergen,
1979): precision, recall, f-measure. We also intro-
duce a new metric that gives us indications about
what types are the most lowering overall perfor-
mance, called “Type error ratio”:

f(d, t) + c(d, t)− 2.fc(d, t)∑
t∈T f(d, t) + c(d, t)− 2.fc(d, t)

(1)

This metric counts the number of errors and
misses for a given type reported to the total number
of errors and misses. It allows us to quantify how
much an improvement on a given type will improve
the overall score. In our case, scores are computed
for chunks on the one hand, and for dependencies
on the other hand. For instance, we have notices
that GN errors represent 34.6% of the chunks errors,
whereas PV only represent 2.2%: we are thus much
more interested in improving detection of GN than
PV regarding current evaluation campaign.

2 The evaluation framework

2.1 Architecture
We need our framework to be portable and to be im-
plemented using an agile approach: each new ver-
sion should be fully functional while adding some
more features. It also must be user-friendly, allow-
ing to easily add eye-candy features. Consequently,
we have chosen to implement these tools in C++,
using the Qt 4.5 library2. This library satisfies our
requirements and will allow to rely on stable and
open source (LGPL) tools, making it feasible for us
to possibly deliver our framework as a free software.

This approach allows us to quickly deliver work-
ing software while continuously testing and devel-
oping it. Iterations of this process are still occurring
but the current version, with its core functions, al-
ready succeeded in running benchmarks and in be-
ginning the improvement of our linguistic resources
while regularly delivering upgraded versions of our
framework. First results of this work will be pre-
sented below in this paper.

The open architecture we have chosen implies to
use externals tools, for analysis and evaluation on
the one hand, for compiling and installing resources
on the other hand. These tools may then be con-
sidered as black boxes, being externals commands
called with convenient parameters. In particular, the
Benchmarking Tool relies on two commands: the
analyzer command, receiving input file as a param-
eter and producing the analyzed file, the evaluation
command, receiving the analyzed file and the ref-
erence file as parameters and outputting counts of
found, correct, found and correct items for each di-
mension. This allows, for example, to replace our

2http://www.qtsoftware.com/

67



www.manaraa.com

analyzer with another one, by just wrapping the lat-
ter in a thin conversion layer to convert its inputs and
its outputs.

2.2 Benchmarking Tool

The Benchmarking Tool, which architecture is de-
picted in Figure 1, is responsible of executing anal-
ysis and evaluation on pairs of data and reference
files, using commands stored in benchmarking con-
figuration. For each pair of files, the registered anal-
ysis command is executed followed by the evalua-
tion one. In our case, those commands apply to the
task of annotating files for syntactic chunks and de-
pendencies.

Figure 1: Benchmarking Tool data flow

We may consider the type of chunks and depen-
dencies as dimensions of an evaluation. To a certain
extent, these may be associated to linguistics phe-
nomena which are tested, as proposed within the
TSNLP project (Balkan et al., 1994) or, more re-
cently, for Q/A systems by (Paiva et al., 2008). But
in these projects, focus is also made on the evalua-
tion tool, where we do not implement the evaluation
tool but rely on an external program to provide ac-
curacy of analysis.

The pairs of data and reference files are inserted
inside a structure implemented as a pipeline, which
may be modified (adding, removing, reordering
units) with common GUI interfaces. After creation
of the pipeline, the user may trigger a benchmark-
ing (progress is shown by coloring pipeline units),
which may be suspended, resumed or restarted at
any moment. For note, the current version of the
framework uses the local machine’s processors to
analyze pipeline units in parallel, but we intend to
distribute the analyzes on the available nodes of a
cluster soon. As soon as results are received, tables
and graphics are updated on screen within a view

showing previous and current results for each eval-
uated dimension. To refine diagnosis, the user may
choose what dimensions are displayed, what met-
rics should be computed, and what pipeline units are
used. Finally, any evaluation may be deleted if the
corresponding modification did not increase perfor-
mance and should be reverted.

Upon demand, the tool saves current benchmark-
ing configuration and results as an XML file. Con-
versely, it loads a pipeline and results from file, so
as to resume or switch between evaluations. The
parsed output of the evaluator tool is recorded for
each pipeline unit and for each dimension, so that
metrics based on those quantities are computed for
each pipeline unity or for the overall corpus. Be-
sides, the date and a user comment for each evalua-
tion are also saved for these records. Writing com-
ments has proved to be very helpful to keep track
of what changes have been made on code, linguistic
resources, configuration, parameters, etc.

As an example within the Passage project, run-
ning evaluation with the Benchmarking Tool al-
lowed us to notice that we had difficulties in rec-
ognizing verb-auxiliary dependencies. Considering
previous results, we detected that this issue appeared
after having introduced a set of idioms concerning
pronominal verbs. Unit testing showed that the anal-
ysis of past perfect progressive for pronominal verbs
was buggy. Patching the code gave us a 10 points f-
measure gain for AUX-V dimension and 0.3 for all
dependencies dimensions (AUX-V having a 2.6%
global error rate within dependencies). Thus, bench-
marking results have been saved with appropriate
comment and other improvements or deficiencies
could be examined.

With these features, the tool offers the possibility
to have an overall view on evaluation results and on
their evolution across time, given multiple data, di-
mensions of analysis and computed metrics. There-
fore, it helps us, without any complex manipulation,
to get a visual report on what implication on evalu-
ation results has a modification to the analysis pro-
cess. Furthermore, those tests allow to search for
errors in resources as well as in code, so as to find
how to enrich our linguistic resources or to identify
deficiencies in our code.

Figure 2 shows a benchmarking using a set of 24
evaluation files (left part) to improve the analyzer’s

68



www.manaraa.com

Figure 2: Chunks (CONSTS), dependencies (RELS), nominal chunks (GN) and direct objects dependencies (COD V)
f-measure results evolution through 4 evaluations on a 24 files corpus

results. The central table shows the measures corre-
sponding to 4 successive evaluations, displaying re-
sults for the dimensions selected on the top most part
(check-boxes). The right-hand side shows graph-
ically the same data, successive evaluations being
displayed as its abscissa and measures as its ordi-
nate.

2.3 Resource Tool

The Resource Tool, which modular design is de-
picted in Figure 3, aims at making resources edit-
ing accessible for people who have neither a deep
knowledge of the system internals nor computer pro-
gramming skills. Enriching our resources implies
having people, either specialized in linguistics or in
testing to interact with the resources, even if not ac-
customed to our specific storage format for each re-
source.

In its current version, the Resource Tool allow to
edit the following resources:

• Dictionary: items and their categories

• Syntactic rules: syntactic dependency detection

Figure 3: Resource Tool modular design

• Part-of-speech tagger learning corpus: tagged
examples of ngrams disambiguation matrices

• Idioms: language dependent fixed expressions

Those resources are presented in a tabbed view,
each having a dedicated interface and access func-
tions. Within each resource, a search feature is im-
plemented, which has shown to be really useful, es-
pecially for dictionary. The tool also provides sim-
ple means to save, compile and install resources,
once they have been modified. This has to be very
transparent for the user and we just provide a “Save”
button and another “Compile and install” button.
The current version of Resource Tool is quite ba-

69



www.manaraa.com

Figure 4: Viewing and editing disambiguation matrices: probabilities and examples for articles followed by nouns

sic in terms of edition capacities. Dictionary has a
dedicated interface for editing words and their cat-
egories, but ngrams, syntactic rules and idioms re-
sources may yet only be changed through a basic
text editor.

Figure 4 shows the resource tool interface for the
annotated corpus that allows to build part-of-speech
disambiguation matrices. The top most tabs allow
to switch between resources among editable ones.
The data table shows the computed 3-grams (from
our own tag set). The left part text field shows a
list of sentences, where occurrences of the ngrams
selected in the above table appear. The right part
text field shows correspondences between two tag
sets. Eventually, the “Edit corpus file” button opens
an editor for the user to add sentences or to modify
sentences in the tagged corpus.

The Resource Tool and the Benchmarking Tool
communicate together through two signals: on the
one hand when resources are installed, the Resource
Tool may trigger an evaluation in the Benchmarking
Tool, on the other hand when the evaluation has fin-
ished, the Resource Tool is notified and warns the
user. Being aware of their respective status, we also

warn the user for dangerous operations, like when
trying to install resources while a benchmarking is
still running, or when quitting the application before
last benchmark is finished.

While these two applications are connected to be
aware of benchmarking and resource installation sta-
tus, no more interaction has been implemented for
the moment to link evaluation and resource edition
together. We have considered implementing a fea-
ture making possible to automatically do unit testing
resource modifications, but, from our point of view,
this has to be implemented with following restric-
tions: the Benchmarking Tool should remain generic
(modifying configuration and resources should not
be part of the tool) ; amount of required disk space
should remain minimal (only differences between
evaluations should be stored).

2.4 Preliminary results

We recently finished the first implementation itera-
tion. The evaluator itself is provided by a partner
laboratory. Its measurement methodology is deeply
presented in (Paroubekr, 2006). From our point of
view, we are only concerned in the fact that these

70



www.manaraa.com

Chunks Dependencies Modifications
F P R F P R
72.6 72.0 73.2 45.9 54.2 39.8 Initial evaluation
76.3 76.2 76.3 47.5 56.1 41.1 Code reengineering / debugging
76.7 76.7 76.7 47.6 56.2 41.3 New set of syntactic rules
76.9 76.9 76.9 47.8 56.7 41.4 Specified preposition detection rules

Table 3: Benchmarking results, f-measure (F), precision (P), recall (R)

measures are relevant for improving the quality of
analysis produced by our parser.

We applied our resource improvement methodol-
ogy on a small annotated corpus of approximately
80.000 words, delivered after the EASy campaign,
among 27 thematic files. For information, the whole
process (analysis and evaluation for each file) is 5
minutes long on a bi-processor: this allows the soft-
ware to be used intensively on a personal computer.
Results in Table 3 show that the use of our frame-
work already allowed us to introduce modifications
of the linguistic resources with the Resource Tool;
these changes lead to a slight improvement of the
overall score of the system.

First, we obtained confirmation that some code
reengineering and some debugging was required.
These tasks, associated with iterative evaluation,
have allowed us to detect parts of the code which
did not give entire satisfaction, especially in the step
transforming output from our analyzer to the ex-
pected Passage format. We also found a bug within
the evaluation scripts, which, once corrected, forced
to restart evaluation measures from the beginning:
this shows the importance of having a stable en-
vironment apart analyzer (evaluation process, valid
data and reference file). These results show that iter-
ating over time and saving history may help to reveal
potential weaknesses of the code and to detect what
goes wrong.

Secondly, these tools where well-suited for eval-
uating the impact of a new set of syntactic rules,
for which we did not have opportunities to do pre-
cise evaluation before. For this set of 20 rules,
we systematically tried each rule separately, then
kept the combination of the rules increasing scores.
This improvement may appear as minimal, but these
rules where written in the context of an ongoing
work on our grammar. It gave an intuitive idea that
this approach is not a dead-end and may be further

explored. Besides, methodologies have been sug-
gested to test the impact of each rule in the entire
set of rules by systematically testing combinations
of rules. But, currently, this is beyond our goal.

Finally, we also introduced some “syntactic
sugar”, by grouping some expressions within rules,
and successfully obtained insurance that these mod-
ification did not lower scores. This is an important
result for us in the sense that we ensure that the same
set of rules expressed differently (with rules more
concise thus more readable) do not introduce regres-
sions.

3 Related works

We have previously described the test suite ap-
proach, along with the TSNLP project. This ap-
proach was concerned with identifying and system-
atically testing linguistic phenomena. As a conclu-
sion of TSNLP, (Oepen et al., 1998) points out the
necessity “to assess the impact of individual contri-
butions, regularly evaluate the quality of the overall
grammar, and compare it to previous versions”. This
project thus showed how positive it is to identify de-
ficiencies and improve grammars by iterating tests
over time. This is the goal we intend to reach with
our framework.

More recently, in biomedical domain, (Baum-
gartner et al., 2008) describes implementation of
a framework and, although it is applied to a text
mining task, the approach remains quite close in
its foundations (evaluation oriented, iterative testing,
modular framework, open source, corpora based,
etc.) to ours and encourages these kind of initiative
by showing the importance of continuous evaluation
while coding parser and engineering grammar. This
work present the interest to rely on the UIMA frame-
work, thus allowing a good modularity. In the future,
we should study the interest to give the ability to our
framework to integrate UIMA-ready modules.

71



www.manaraa.com

Close to our Benchmarking Tool, some projects
aim at building frameworks for text analysis, an-
notation and evaluation, which projects encourage
people to use a common architecture, as openNLP
or GATE. Those may also be used for benchmark-
ing and evaluation tasks (Cunningham et al., 2002)
as part of their process. But, while these frame-
work often provide evaluation and regression test-
ing tools, they are rarely well-suited for only imple-
menting specific diagnostic tasks. We would appre-
ciate that such frameworks focusing on evaluating,
benchmarking and diagnosing, as generic as possi-
ble across IR tasks, become more widely available.
If our Benchmarking Tool appears to be appropri-
ate for other systems evaluations, we will consider
making it available for the IR community.

4 Conclusions and future work

From our first use of the framework, we are con-
vinced of the importance of diagnostic for acceler-
ating the improvement of our analyzer, by making
linguistic resources accessible and by iterating tests
and comparing results obtained over time. We also
concluded that this generic framework would be use-
ful in other tasks, such as Information Retrieval. Es-
pecially, image retrieval is a very active and growing
field of research, and we currently consider apply-
ing the Benchmarking Tool for accelerating the im-
provement of the image retrieval system developed
in our laboratory (Joint et al., 2004).

This work also emphasizes the great distinc-
tion between performance evaluation and diagnos-
tic evaluation. In our case, the association of the
Benchmarking Tool and the Resource Tool used in
conjunction with unit and regression testings helps
to identify what part of the analysis process is con-
cerned and, for grammar engineering, what rule or
set of rules have to be questioned in order to improve
the overall system performance.

Future directions of our work include the paral-
lelization of the analysis on a cluster, so as to re-
trieve evaluation results as quickly as possible. This
should allow us to use evaluation results from a
larger annotated corpus. We also intend to focus on
visualization of results for better identification and
interpretation of errors, in order to access directly er-
roneous analysis and involved resources. A second

development iteration will include the development
of more user friendly resources editors.

We also plan to work on automatic syntactic rules
inference, based on previous work in our laboratory
(Embarek and Ferret, 2008). For this goal, contin-
uous benchmarking will be even more important as
the system will rely on experts tuning parameters for
learning rules, the syntactic rules themselves being
not necessarily edited nor viewable for the expert.

Acknowledgments

This work was partly funded by the French National
Research Agency (ANR), MDCA program 2006.

References

Lorna Balkan, Klaus Netterz, Doug Arnold, Siety Meijer,
1994. Test Suites for Natural Language Processing.
Proceedings of the Language Engineering Convention
(LEC’94), 17–22.

William A Baumgartner, Kevin Bretonnel Cohen,
Lawrence Hunter, 2008. An open-source framework
for large-scale, flexible evaluation of biomedical text
mining systems. Journal of Biomedical Discovery and
Collaboration 2008, Vol. 3, pp 1.

Romaric Besançon, Gaël de Chalendar, 2005.
L’analyseur syntaxique de LIMA dans la campagne
d’valuation EASY. Actes des Ateliers de la 12e Con-
frence annuelle sur le Traitement Automatique des
Langues Naturelles (TALN 2005), Vol. 2, pp 21.

John Carroll, Anette Frank, Dekang Lin, Detlef Prescher,
Hans Uszkoreit, 2002. Proceedings of the workshop
beyond parseval - toward improved evaluation mea-
sures for parsing systems. Proceedings of the 3rd
International Conference on Language Resources and
Evaluation (LREC’02).

Nikos Chatzichrisafis, Dick Crouch, Tracy Holloway
King, Rowan Nairn, Manny Rayner, Marianne Santa-
holma, 2007. Regression Testing For Grammar-Based
Systems. Proceedings of the GEAF07 Workshop, pp
128–143.

Eric V. de la Clergerie, Olivier Hamon, Djamel Mostefa,
Christelle Ayache, Patrick Paroubek, Anne Vilnat,
2008. PASSAGE: from French Parser Evaluation
to Large Sized Treebank. Proceedings of the Sixth
International Language Resources and Evaluation
(LREC’08).

Eric V. de la Clergerie, Christelle Ayache, Gaël de
Chalendar, Gil Francopoulo, Claire Gardent, Patrick
Paroubek, 2008. Large scale production of syntactic

72



www.manaraa.com

annotations for French. In Proceedings of the interna-
tional workshop on Automated Syntactic Annotations
for Interoperable Language Resources, Hong-Kong.

Hamish Cunningham, Diana Maynard, Kalina
Bontcheva, Valentin Tablan, 2002. GATE: A
framework and graphical development environment
for robust NLP tools and applications. Proceedings of
the 40th Anniversary Meeting of the ACL, 2002.

Mehdi Embarek, Olivier Ferret, 2008. Learning patterns
for building resources about semantic relations in the
medical domain. 6th Conference on Language Re-
sources and Evaluation (LREC’08), Marrakech, Mo-
rocco.

Jonathan G. Fiscus, 1997. A Post-Processing System to
Yield Reduced Word Error Rates: Recognizer Output
Voting Error Reduction (ROVER). Proceedings IEEE
Workshop on Automatic Speech Recognition and Un-
derstanding (ASRU97), pp 347–352.

Magali Joint, Pierre-Alain Moellic, Patrick Hede, Pas-
cal Adam, 2004. PIRIA: a general tool for indexing,
search, and retrieval of multimedia content. Proceed-
ings of SPIE, Vol. 5298, 116 (2004), San Jose, CA,
USA.

Sylvain Kahane, 2000. Les grammaires de dpendance.
Traitement Automatique des Langues, Vol. 41.

Stephan Oepen, Daniel P. Flickinger, 1998. Towards sys-
tematic grammar profiling. Test suite technology ten
years after. Special Issue on Evaluation 12, 411–436.

Valeria de Paiva, Tracy Holloway King, 2008. Design-
ing Testsuites for Grammar-based Systems in Appli-
cations. Proceedings of the GEAF08 Workshop, pp
49–56.

Patrick Paroubek, Isabelle Robba, Anne Vilnat, Christelle
Ayache, 2006. Data, Annotations and Measures in
EASY, the Evaluation Campaign for Parsers of French.
5th Conference on Language Resources and Evalua-
tion (LREC’06), Genoa, Italy.

C. J. van Rijsbergen, 1979. Information Retrieval, 2nd
edition.

73


